Papers on
FoxH1
The activation of the TLR2/p38 pathway by sodium butyrate in bovine mammary epithelial cells is involved in the reduction of Staphylococcus aureus internalization.López-Meza et al., Nicolás Romero, Mexico. In Mol Immunol, Dec 2015
Additionally, bMECs that were treated with 0.5mM NaB (24h) showed activation of 8 transcriptional factors (AP-1, E2F-1, FAST-1, MEF-1, EGR, PPAR, ER and CBF), which were partially reverted when the bMECs were S. aureus-challenged.
Reprogramming barriers and enhancers: strategies to enhance the efficiency and kinetics of induced pluripotency.Ebrahimi, Yazd, Iran. In Cell Regen (lond), 2014
Different strategies have been applied for enhancing reprogramming efficiency, including depletion/inhibition of barriers (p53, p21, p57, p16(Ink4a)/p19(Arf), Mbd3, etc.), overexpression of enhancing genes (e.g., FOXH1, C/EBP alpha, UTF1, and GLIS1), and administration of certain cytokines and small molecules.
Etiopathogenetic advances and management of holoprosencephaly: from bench to bedside.Bona et al., Novara, Italy. In Panminerva Med, 2010
Genetic causes are responsible for about 20% of cases: they are chromosomal abnormalities and gene mutations: up to date, nine genes (SHH, ZIC2, SIX3, TGIF, PATCHED1, TDGF1/CRIPTO, FAST1, GLI2 and DHCR) are definitely associated with HPE, but many others candidate gene are under investigation.
Holoprosencephaly: clinical, anatomic, and molecular dimensions.Cohen, Halifax, Canada. In Birth Defects Res A Clin Mol Teratol, 2006
Holoprosencephaly is addressed under the following headings: alobar, semilobar, and lobar holoprosencephaly; arrhinencephaly; agenesis of the corpus callosum; pituitary abnormalities; hindbrain abnormalities; syntelencephaly; aprosencephaly/atelencephaly; neural tube defects; facial anomalies; median cleft lip; minor facial anomalies; single maxillary central incisor; holoprosencephaly-like phenotype; epidemiology; genetic causes of holoprosencephaly; teratogenic causes of holoprosencephaly; SHH mutations; ZIC2 mutations; SIX3 mutations; TGIF mutations; PTCH mutations; GLI2 mutations; FAST1 mutations; TDGF1 mutations; and DHCR7 mutations.
Human FOX gene family (Review).Katoh et al., Japan. In Int J Oncol, 2004
Human Forkhead-box (FOX) gene family consists of at least 43 members, including FOXA1, FOXA2, FOXA3, FOXB1, FOXC1, FOXC2, FOXD1, FOXD2, FOXD3, FOXD4, FOXD5 (FOXD4L1), FOXD6 (FOXD4L3), FOXE1, FOXE2, FOXE3, FOXF1, FOXF2, FOXG1 (FOXG1B), FOXH1, FOXI1, FOXJ1, FOXJ2, FOXJ3, FOXK1, FOXK2, FOXL1, FOXL2, FOXM1, FOXN1, FOXN2 (HTLF), FOXN3 (CHES1), FOXN4, FOXN5 (FOXR1), FOXN6 (FOXR2), FOXO1 (FOXO1A), FOXO2 (FOXO6), FOXO3 (FOXO3A), FOXO4 (MLLT7), FOXP1, FOXP2, FOXP3, FOXP4, and FOXQ1.
Nodal signaling in vertebrate development.Schier, New York City, United States. In Annu Rev Cell Dev Biol, 2002
Nodal signaling activates a canonical TGFss pathway involving activin receptors, Smad2 transcription factors, and FoxH1 coactivators.