gopubmed logo
 
find other proteinsAll proteins
GoPubMed Proteins lists recent and important papers and reviews for proteins. Page last changed on 03 Sep 2015.

SMAD family member 4

Smad4, DPC4
This gene encodes a member of the Smad family of signal transduction proteins. Smad proteins are phosphorylated and activated by transmembrane serine-threonine receptor kinases in response to TGF-beta signaling. The product of this gene forms homomeric complexes and heteromeric complexes with other activated Smad proteins, which then accumulate in the nucleus and regulate the transcription of target genes. This protein binds to DNA and recognizes an 8-bp palindromic sequence (GTCTAGAC) called the Smad-binding element (SBE). The Smad proteins are subject to complex regulation by post-translational modifications. Mutations or deletions in this gene have been shown to result in pancreatic cancer, juvenile polyposis syndrome, and hereditary hemorrhagic telangiectasia syndrome. [provided by RefSeq, Oct 2009] (from NCBI)
Top mentioned proteins: p53, HAD, CAN, p16, TGF-beta
Papers using Smad4 antibodies
Smad4 is required for the normal organization of the cartilage growth plate
Supplier
Glimcher Laurie H et al., In The EMBO Journal, 2004
... (Santa Cruz); anti-Smad2, anti-phospho-Smad1/5/8, anti-phospho-Smad2 (S465/467), and anti-phospho-p38 (Cell Signaling); anti-Smad1 (Invitrogen); anti-Flag (M2, Sigma); anti-Smad4 (Abcam); anti-XIAP (Stressgen); and anti-GAPDH ...
Transforming growth factor-beta-induced inhibition of myogenesis is mediated through Smad pathway and is modulated by microtubule dynamic stability
Supplier
Kapus András et al., In The Journal of Cell Biology, 2003
tubulin (Sigma-Aldrich), cofilin, Smad2, phospho-Smad3, Smad4 (Cell Signaling Technology), c-Myc (clone 9E10), ...
Insulin-like growth factor-I inhibits transcriptional responses of transforming growth factor-beta by phosphatidylinositol 3-kinase/Akt-dependent suppression of the activation of Smad3 but not Smad2.
Supplier
Nurminsky Dmitry I., In PLoS ONE, 2002
... ab65252), HDAC4 (Cell Signaling, #2072), HAND2 (Abcam, ab56590), Tropomyosin C (Santacruz, sc73225), DnaJB1 (Santacruz, sc-1800) and SMAD4 (Abcam, ab1341) ...
CHMP5 is essential for late endosome function and down-regulation of receptor signaling during mouse embryogenesis
Supplier
Ghosh Sankar et al., In The Journal of Cell Biology, 1999
... The antibodies used were anti–phospho-Erk1/2 (Cell Signaling Technology), anti–phospho-Smad2 (Cell Signaling Technology), anti-Smad4 (Santa Cruz Biotechnology, Inc; H552), anti-Smad2 (Cell ...
Regulation of growth and prostatic marker expression by activin A in an androgen-sensitive prostate cancer cell line LNCAP
Supplier
Nishio K et al., In British Journal of Cancer, 1996
... The following antibodies were used: anti-p21, anti-cdk2, anti-cyclin D, anti-phospho-Rb, anti-Smad2, anti-phospho-Smad2, anti-Smad3, anti-Smad4, and secondary antibodies (Cell Signaling, Beverly, MA, USA); anti- ...
Papers on Smad4
Dissecting pulmonary large cell carcinoma by targeted next generation sequencing of several cancer genes pushes genotypic-phenotypic correlations to emerge.
New
Pastorino et al., Milano, Italy. In J Thorac Oncol, 26 Sep 2015
Twenty-four cases featuring TTF1+/p40-, TTF1+/p40±, TTF1-/p40± or TTF1-/p40- phenotypes comprised ATM, BRAF, CDKN2A, EGFR, ERBB4, FBXW7, FLT3, KRAS, NRAS, PIK3CA, PTPN11, RET, SMAD4, SMO, STK11 or TP53 mutations in keeping with ADC lineage while three tumors showing TTF1-/p40+ phenotype harbored TP53 only and no ADC-related mutations in keeping with SQC lineage.
Activin A increases human trophoblast invasion by inducing SNAIL-mediated MMP2 up-regulation through ALK4.
New
Leung et al., Vancouver, Canada. In J Clin Endocrinol Metab, 25 Sep 2015
In HTR8/SVneo cells, activin A-induced production of SNAIL and MMP2 was abolished by pre-treatment with the TGF-β type I receptor (ALK4/5/7) inhibitor SB431542 or siRNA targeting ALK4, SMAD2/3 or common SMAD4.
Functional interaction between COL4A1/COL4A2 and SMAD3 risk loci for coronary artery disease.
New
McPherson et al., Ottawa, Canada. In Atherosclerosis, 20 Sep 2015
siRNA mediated knockdown of SMAD3 and SMAD4 abolished the stimulatory effects of TGFβ1 on COL4A1/COL4A2 (p < 0.001) whereas SMAD2 knockdown had no effect.
MicroRNA-224 is implicated in lung cancer pathogenesis through targeting caspase-3 and caspase-7.
New
Croce et al., Columbus, United States. In Oncotarget, 19 Sep 2015
We further demonstrated that miR-224 functions as an oncogene in NSCLC by directly targeting TNFAIP1 and SMAD4.
It's a SMAD/SMAD World.
New
Impact
Maitra et al., Houston, United States. In Cell, Jul 2015
DPC4/SMAD4 mutations are associated with aggressive pancreatic cancer.
[Advance in the biology of pancreatic of cancer].
Review
New
Cordelier et al., Toulouse, France. In Bull Cancer, Jun 2015
P16, TP53, DPC4/Smad4 tumor suppressor pathways are genetically inactivated in the majority of pancreatic carcinomas, whereas oncogenic k-ras is activated.
Sequential cancer mutations in cultured human intestinal stem cells.
New
Impact
Clevers et al., Utrecht, Netherlands. In Nature, Jun 2015
Here we utilize CRISPR/Cas9 technology for targeted gene modification of four of the most commonly mutated colorectal cancer genes (APC, P53 (also known as TP53), KRAS and SMAD4) in cultured human intestinal stem cells.
Pathogenesis of cholangiocarcinoma: From genetics to signalling pathways.
Review
New
Teh et al., Singapore, Singapore. In Best Pract Res Clin Gastroenterol, Apr 2015
A series of highly recurrent mutations in genes such as TP53, KRAS, SMAD4, BRAF, MLL3, ARID1A, PBRM1 and BAP1, which are known to be involved in cell cycle control, cell signalling pathways and chromatin dynamics, have led to investigations of their roles, through molecular to mouse modelling studies, in cholangiocarcinogenesis.
Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids.
New
Impact
Sato et al., Tokyo, Japan. In Nat Med, Mar 2015
By modulating the culture conditions to mimic that of the intestinal niche, we selected isogenic organoids harboring mutations in the tumor suppressor genes APC, SMAD4 and TP53, and in the oncogenes KRAS and/or PIK3CA.
Whole genomes redefine the mutational landscape of pancreatic cancer.
New
Impact
Grimmond et al., Brisbane, Australia. In Nature, Mar 2015
Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2).
Genetic diagnosis of high-penetrance susceptibility for colorectal cancer (CRC) is achievable for a high proportion of familial CRC by exome sequencing.
New
Impact
Houlston et al., London, United Kingdom. In J Clin Oncol, Mar 2015
PATIENTS AND METHODS: To quantify the impact of germline mutation to familial CRC, we sequenced the mismatch repair genes (MMR) APC, MUTYH, and SMAD4/BMPR1A in 626 early-onset familial CRC cases ascertained through a population-based United Kingdom national registry.
Novel targets in pancreatic cancer research.
Review
New
Brody et al., Philadelphia, United States. In Semin Oncol, Feb 2015
For example, PDA is driven by key activating, gain-of-function mutations in proto-oncogenes (eg, K-Ras) along with loss of function of tumor suppressor genes (eg, p16, SMAD4).
Pancreatic cancer: optimizing treatment options, new, and emerging targeted therapies.
Review
New
Coveler et al., Seattle, United States. In Drug Des Devel Ther, Dec 2014
Pancreatic adenocarcinoma is characterized by several germline or acquired genetic mutations, the most common being KRAS (90%), CDK2NA (90%), TP53 (75%-90%), DPC4/SMAD4 (50%).
Protein-Protein Interaction Network could reveal the relationship between the breast and colon cancer.
New
Seyyedi et al., Tehrān, Iran. In Gastroenterol Hepatol Bed Bench, Dec 2014
Centrality and cluster screening identified hub genes, including SMAD2, SMAD3, (SMAD4, MYC), JUN, BAD, TP53.
[Genetic aspects of pancreatic cancer].
Review
Tov et al., In Eksp Klin Gastroenterol, 2013
Currently, the most significant genes for PC include KRAS2, p16/CDKN2, TP53, SMAD4/DPC4.
MicroRNA-146a modulates TGF-beta1-induced hepatic stellate cell proliferation by targeting SMAD4.
GeneRIF
Li et al., Hefei, China. In Cell Signal, 2012
Bioinformatics analyses predict that Smad4 is the potential target of miR-146a.
Vascular smooth muscle cell Smad4 gene is important for mouse vascular development.
GeneRIF
Chen et al., Birmingham, United States. In Arterioscler Thromb Vasc Biol, 2012
Provide important insight into the role of Smad4 and its upstream Smads in regulating vascular smooth muscle function and vascular development of mice.
Transforming growth factor-β/SMAD Target gene SKIL is negatively regulated by the transcriptional cofactor complex SNON-SMAD4.
GeneRIF
Macías-Silva et al., Mexico. In J Biol Chem, 2012
when the SNON-SMAD4 complex is absent as in some cancer cells lacking SMAD4 the regulation of some TGF-beta target genes is modified
Dynamics of TGF-β signaling reveal adaptive and pulsatile behaviors reflected in the nuclear localization of transcription factor Smad4.
GeneRIF
Brivanlou et al., New York City, United States. In Proc Natl Acad Sci U S A, 2012
TGF-beta signaling has a role in nuclear localization of transcription factor Smad4
Mutations of SMAD4 account for both LAPS and Myhre syndromes.
GeneRIF
Thibodeau et al., In Am J Med Genet A, 2012
Missense mutations of SMAD4 account for both LAPS and Myhre syndromes.
share on facebooktweetadd +1mail to friends