gopubmed logo
 
find other proteinsAll proteins
GoPubMed Proteins lists recent and important papers and reviews for proteins. Page last changed on 02 Oct 2014.

SMAD family member 4

Smad4, DPC4
This gene encodes a member of the Smad family of signal transduction proteins. Smad proteins are phosphorylated and activated by transmembrane serine-threonine receptor kinases in response to TGF-beta signaling. The product of this gene forms homomeric complexes and heteromeric complexes with other activated Smad proteins, which then accumulate in the nucleus and regulate the transcription of target genes. This protein binds to DNA and recognizes an 8-bp palindromic sequence (GTCTAGAC) called the Smad-binding element (SBE). The Smad proteins are subject to complex regulation by post-translational modifications. Mutations or deletions in this gene have been shown to result in pancreatic cancer, juvenile polyposis syndrome, and hereditary hemorrhagic telangiectasia syndrome. [provided by RefSeq, Oct 2009] (from NCBI)
Top mentioned proteins: p53, TGF-beta, HAD, p16, CAN
Papers using Smad4 antibodies
Smad4 is required for the normal organization of the cartilage growth plate
Supplier
Glimcher Laurie H et al., In The EMBO Journal, 2004
... (Santa Cruz); anti-Smad2, anti-phospho-Smad1/5/8, anti-phospho-Smad2 (S465/467), and anti-phospho-p38 (Cell Signaling); anti-Smad1 (Invitrogen); anti-Flag (M2, Sigma); anti-Smad4 (Abcam); anti-XIAP (Stressgen); and anti-GAPDH ...
Transforming growth factor-beta-induced inhibition of myogenesis is mediated through Smad pathway and is modulated by microtubule dynamic stability
Supplier
Kapus András et al., In The Journal of Cell Biology, 2003
tubulin (Sigma-Aldrich), cofilin, Smad2, phospho-Smad3, Smad4 (Cell Signaling Technology), c-Myc (clone 9E10), ...
Insulin-like growth factor-I inhibits transcriptional responses of transforming growth factor-beta by phosphatidylinositol 3-kinase/Akt-dependent suppression of the activation of Smad3 but not Smad2.
Supplier
Nurminsky Dmitry I., In PLoS ONE, 2002
... ab65252), HDAC4 (Cell Signaling, #2072), HAND2 (Abcam, ab56590), Tropomyosin C (Santacruz, sc73225), DnaJB1 (Santacruz, sc-1800) and SMAD4 (Abcam, ab1341) ...
CHMP5 is essential for late endosome function and down-regulation of receptor signaling during mouse embryogenesis
Supplier
Ghosh Sankar et al., In The Journal of Cell Biology, 1999
... The antibodies used were anti–phospho-Erk1/2 (Cell Signaling Technology), anti–phospho-Smad2 (Cell Signaling Technology), anti-Smad4 (Santa Cruz Biotechnology, Inc; H552), anti-Smad2 (Cell ...
Regulation of growth and prostatic marker expression by activin A in an androgen-sensitive prostate cancer cell line LNCAP
Supplier
Nishio K et al., In British Journal of Cancer, 1996
... The following antibodies were used: anti-p21, anti-cdk2, anti-cyclin D, anti-phospho-Rb, anti-Smad2, anti-phospho-Smad2, anti-Smad3, anti-Smad4, and secondary antibodies (Cell Signaling, Beverly, MA, USA); anti- ...
Papers on Smad4
Extracellular vesicles released from mesenchymal stromal cells modulate miRNA in renal tubular cells and inhibit ATP depletion injury.
New
Camussi et al., Torino, Italy. In Stem Cells Dev, Sep 2014
Prediction of miRNA targets showed that miRNAs modulated in PTECs are involved in process of renal recovery with downregulation of coding-mRNAs associated with apoptosis, cytoskeleton reorganization, and hypoxia, such as CASP3 and 7, SHC1 and SMAD4.
Loss of SMAD4 staining in pre-operative cell blocks is associated with distant metastases following pancreaticoduodenectomy with venous resection for pancreatic cancer.
New
Krasinskas et al., Pittsburgh, United States. In J Surg Oncol, Aug 2014
Loss of SMAD4 staining on resected specimens has been associated with outcomes.
Mechanisms of action of acetaldehyde in the up-regulation of the human α2(I) collagen gene in hepatic stellate cells: key roles of Ski, SMAD3, SMAD4, and SMAD7.
New
Lakshman et al., Colombia. In Am J Pathol, May 2014
We used human and mouse hepatic stellate cells to elucidate the mechanisms whereby acetaldehyde up-regulates COL1A2 by modulating the role of Ski and the expression of SMADs 3, 4, and 7. Acetaldehyde induced up-regulation of COL1A2 by 3.5-fold, with concomitant increases in the mRNA (threefold) and protein (4.2- and 3.5-fold) levels of SMAD3 and SMAD4, respectively.
The influence of biodegradable magnesium alloys on the osteogenic differentiation of human mesenchymal stem cells.
New
Nisbet et al., Australia. In J Biomed Mater Res A, Mar 2014
This was also observed from gene expression data, where these alloys upregulated TGFβ-1, SMAD4, FGF-2, FGF-10 and BMP-2, while SOX-2, SOX-9 and TNF-α were downregulated.
Molecular genetics of pancreatic neoplasms and their morphologic correlates: an update on recent advances and potential diagnostic applications.
Review
New
Adsay et al., Atlanta, United States. In Am J Clin Pathol, Feb 2014
RESULTS: Mutations in KRAS, P16/CDKN2A, TP53, and SMAD4/DPC4 are commonly seen in ductal neoplasia but not in nonductal tumors; ductal adenocarcinomas with SMAD4/DPC4 loss are associated with widespread metastasis and poor prognosis.
Comparison of the cancer gene targeting and biochemical selectivities of all targeted kinase inhibitors approved for clinical use.
New
Zaman et al., Oss, Netherlands. In Plos One, Dec 2013
Correlation of drug activities with cancer gene mutations revealed novel drug sensitivity markers, suggesting that cancers dependent on mutant CTNNB1 will respond to trametinib and other MEK inhibitors, and cancers dependent on SMAD4 to small molecule EGFR inhibitor drugs.
Contributions of molecular analysis to the diagnosis and treatment of gastrointestinal neoplasms.
Review
New
Bellizzi, Iowa City, United States. In Semin Diagn Pathol, Nov 2013
The first section describes clinical applications of 11 immunohistochemical stains (p53, HER2, KIT, SDHB, SMAD4, beta-catenin, L-FABP, MLH1, PMS2, MSH2, and MSH6), the results of which directly reflect underlying genetic or epigenetic events.
[Kras oncogene and pancreatic cancer: thirty years after].
Review
New
Buscail et al., Toulouse, France. In Med Sci (paris), Nov 2013
These models are induced on the basis of Kras mutation (Pdx1-Cre ; Kras(G12D) mice) associated or not to the inactivation of tumour suppressor genes (TP53, DPC4, INK4A).
Colorectal cancer diagnostics: biomarkers, cell-free DNA, circulating tumor cells and defining heterogeneous populations by single-cell analysis.
Review
New
Jeffrey et al., Stanford, United States. In Expert Rev Mol Diagn, Jul 2013
The clinical relevance of mutations including microsatellite instability, KRAS, BRAF and SMAD4 is addressed.
Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity.
New
Impact
Bass et al., Boston, United States. In Nat Genet, May 2013
Of these genes, five (TP53, CDKN2A, SMAD4, ARID1A and PIK3CA) have previously been implicated in EAC.
COUP-TFII inhibits TGF-β-induced growth barrier to promote prostate tumorigenesis.
New
Impact
Tsai et al., Houston, United States. In Nature, Feb 2013
Here we show that COUP transcription factor II (COUP-TFII, also known as NR2F2), a member of the nuclear receptor superfamily, serves as a key regulator to inhibit SMAD4-dependent transcription, and consequently overrides the TGF-β-dependent checkpoint for PTEN-null indolent tumours.
Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.
Impact
Grimmond et al., Sydney, Australia. In Nature, 2012
We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6).
MicroRNA-146a modulates TGF-beta1-induced hepatic stellate cell proliferation by targeting SMAD4.
GeneRIF
Li et al., Hefei, China. In Cell Signal, 2012
Bioinformatics analyses predict that Smad4 is the potential target of miR-146a.
Vascular smooth muscle cell Smad4 gene is important for mouse vascular development.
GeneRIF
Chen et al., Birmingham, United States. In Arterioscler Thromb Vasc Biol, 2012
Provide important insight into the role of Smad4 and its upstream Smads in regulating vascular smooth muscle function and vascular development of mice.
Transforming growth factor-β/SMAD Target gene SKIL is negatively regulated by the transcriptional cofactor complex SNON-SMAD4.
GeneRIF
Macías-Silva et al., Mexico. In J Biol Chem, 2012
when the SNON-SMAD4 complex is absent as in some cancer cells lacking SMAD4 the regulation of some TGF-beta target genes is modified
Comprehensive molecular characterization of human colon and rectal cancer.
Impact
Cancer Genome Atlas Network, In Nature, 2012
Twenty-four genes were significantly mutated, and in addition to the expected APC, TP53, SMAD4, PIK3CA and KRAS mutations, we found frequent mutations in ARID1A, SOX9 and FAM123B.
Dynamics of TGF-β signaling reveal adaptive and pulsatile behaviors reflected in the nuclear localization of transcription factor Smad4.
GeneRIF
Brivanlou et al., New York City, United States. In Proc Natl Acad Sci U S A, 2012
TGF-beta signaling has a role in nuclear localization of transcription factor Smad4
Mutations of SMAD4 account for both LAPS and Myhre syndromes.
GeneRIF
Thibodeau et al., In Am J Med Genet A, 2012
Missense mutations of SMAD4 account for both LAPS and Myhre syndromes.
Exome sequencing of liver fluke-associated cholangiocarcinoma.
Impact
Teh et al., Singapore, Singapore. In Nat Genet, 2012
In addition to the known cancer-related genes TP53 (mutated in 44.4% of cases), KRAS (16.7%) and SMAD4 (16.7%), we identified somatic mutations in 10 newly implicated genes in 14.8-3.7% of cases.
Pancreatic cancer and diabetes.
Review
Morrison, Seattle, United States. In Adv Exp Med Biol, 2011
Genetic mutations, such as activation of the KRAS2 oncogene, inactivation of the tumor-suppressor gene CDKN2A, inactivation of the tumor-suppressor gene TP53 and deleted in pancreatic cancer 4 (DPC4) gene defects are seen in those with pancreatic cancer.
share on facebooktweetadd +1mail to friends