gopubmed logo
 
find other proteinsAll proteins
GoPubMed Proteins lists recent and important papers and reviews for proteins. Page last changed on 15 Apr 2015.

PTEN induced putative kinase 1

PINK1, PARK6, PTEN-induced putative kinase 1
This gene encodes a serine/threonine protein kinase that localizes to mitochondria. It is thought to protect cells from stress-induced mitochondrial dysfunction. Mutations in this gene cause one form of autosomal recessive early-onset Parkinson disease. [provided by RefSeq, Jul 2008] (from NCBI)
Top mentioned proteins: E3 ubiquitin ligase, PTEN, DJ-1, LRRK2, CAN
Papers using PINK1 antibodies
PINK1-dependent recruitment of Parkin to mitochondria in mitophagy
Supplier
Xia Xu-Gang et al., In International Journal of Biological Sciences, 2009
... PINK1 RNAi transgenic mice have been characterized ...
Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling.
Supplier
Green Douglas R., In PLoS Biology, 2005
... YFP-Parkin, YFP-Parkin mutants, mCherry-Parkin, PINK1-YFP, PINK1KD-YFP, PINK1 Δ1-110-YFP, and Opa3-PINK1 Δ1-110-YFP are in C1 or N1 Clontech vectors ...
Papers on PINK1
Convergence of parkin, PINK1 and α-synuclein on stress-induced mitochondrial morphological remodelling.
New
Yao et al., United States. In J Biol Chem, 10 May 2015
Mitochondrial stress-induced fusion requires PINK1 (PARK6), mitofusins and parkin ubiquitin ligase activity.
The endoplasmic reticulum/mitochondria interface: a subcellular platform for the orchestration of the functions of the PINK1-Parkin pathway?
New
Corti et al., Paris, France. In Biochem Soc Trans, 01 May 2015
Mutations in the PARK2 and PARK6 genes, coding for the cytosolic E3 ubiquitin protein ligase Parkin and the mitochondrial serine/threonine kinase PINK1 [phosphatase and tensin homologue (PTEN)-induced putative kinase 1], lead to clinically similar early-onset Parkinsonian syndromes.
Biochemical properties of the kinase PINK1 as sensor protein for mitochondrial damage signalling.
New
Voos et al., Bonn, Germany. In Biochem Soc Trans, 01 May 2015
The kinase PINK1 [phosphatase and tensin homologue (PTEN)-induced kinase 1] has been identified as a crucial player in a specific damage signalling pathway, eliminating defective mitochondria by an autophagic process.
Selective removal of mitochondria via mitophagy: distinct pathways for different mitochondrial stresses.
Review
New
Chen et al., Beijing, China. In Biochim Biophys Acta, 01 May 2015
In mammals, different mitophagy effectors, including the mitophagy receptors NIX, BNIP3 and FUDNC1 and the PINK1/Parkin pathway, have been identified to participate in the selective clearance of mitochondria.
iPS models of Parkin and PINK1.
New
Klein et al., Lübeck, Germany. In Biochem Soc Trans, 01 May 2015
Recessively inherited Parkin and PTEN-induced putative kinase 1 (PINK1) mutations have been investigated in this context and the present review describes the first insights gained from studies in iPSC-derived dopaminergic neurons, which comprise abnormalities in mitochondrial and dopamine homoeostasis, microtubular stability and axonal outgrowth.
Mitochondrial dysfunction and mitophagy in Parkinson's: from familial to sporadic disease.
Review
New
Wade-Martins et al., Montréal, Canada. In Trends Biochem Sci, 07 Apr 2015
Recently, the mechanisms by which PD-associated mitochondrial proteins phosphatase and tensin homolog deleted on chromosome 10 (PTEN)-induced putative kinase 1 (PINK1) and parkin function and induce neurodegeneration have been identified.
Molecular mechanisms underlying PINK1 and Parkin catalyzed ubiquitylation of substrates on damaged mitochondria.
Review
New
Matsuda et al., Tokyo, Japan. In Biochim Biophys Acta, 17 Mar 2015
UNASSIGNED: PINK1 and Parkin are gene products that cause genetic recessive Parkinsonism.
PINK1/Parkin-mediated mitophagy in mammalian cells.
Review
New
Okamoto et al., Suita, Japan. In Curr Opin Cell Biol, 16 Mar 2015
In mammalian cells, the Ser/Thr kinase PINK1 and the E3 ubiquitin ligase Parkin act cooperatively in sensing mitochondrial functional state and marking damaged mitochondria for disposal via the autophagy pathway.
Autophagy machinery in the context of mammalian mitophagy.
Review
New
Mizushima et al., Tokyo, Japan. In Biochim Biophys Acta, Feb 2015
PINK1-Parkin-dependent mitophagy has been extensively studied in the mammalian system.
PINK1 and Parkin control localized translation of respiratory chain component mRNAs on mitochondria outer membrane.
New
Impact
Lu et al., Stanford, United States. In Cell Metab, Feb 2015
Here we show that Parkinson's disease (PD)-associated genes PINK1 and Parkin direct localized translation of certain nuclear-encoded RCC (nRCC) mRNAs.
[CK2beta promotes Pink1/Parkin-mediated MIRO1 degradation].
New
Jiang et al., In Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, Dec 2014
PTEN-induced putative kinase 1 (PINK1), a Parkinson's disease (PD)-related protein, has two isoforms, the mitochondria-localized full-length isoform PINK1FL and the cytoplasm-localized short isoform PINK1-cyto.
The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy.
New
Impact
Sheng et al., San Francisco, United States. In Nature, Jul 2014
Here we report that USP30, a deubiquitinase localized to mitochondria, antagonizes mitophagy driven by the ubiquitin ligase parkin (also known as PARK2) and protein kinase PINK1, which are encoded by two genes associated with Parkinson's disease.
Ubiquitin is phosphorylated by PINK1 to activate parkin.
New
Impact
Matsuda et al., Tokyo, Japan. In Nature, Jul 2014
PINK1 (PTEN induced putative kinase 1) and PARKIN (also known as PARK2) have been identified as the causal genes responsible for hereditary recessive early-onset Parkinsonism.
Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction.
New
Impact
Bohr et al., Baltimore, United States. In Cell, Jun 2014
XPA-deficient cells show defective mitophagy with excessive cleavage of PINK1 and increased mitochondrial membrane potential.
PTENα, a PTEN isoform translated through alternative initiation, regulates mitochondrial function and energy metabolism.
New
Impact
Yin et al., Beijing, China. In Cell Metab, Jun 2014
PTENα interacts with canonical PTEN to increase PINK1 protein levels and promote energy production.
Inactivation of Pink1 gene in vivo sensitizes dopamine-producing neurons to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and can be rescued by autosomal recessive Parkinson disease genes, Parkin or DJ-1.
GeneRIF
Park et al., Ottawa, Canada. In J Biol Chem, 2012
This evidence not only provides strong evidence for the role of endogenous Pink1 in neuronal survival, but also supports a role of DJ-1 and Parkin acting parallel or downstream of endogenous Pink1 to mediate survival in a mammalian in vivo context.
Pink1 kinase and its membrane potential (Deltaψ)-dependent cleavage product both localize to outer mitochondrial membrane by unique targeting mode.
GeneRIF
Voos et al., Bonn, Germany. In J Biol Chem, 2012
Multiple targeting signals featured by the Pink1 sequence result in the final localization of both the full-length protein and its major Deltapsi-dependent cleavage product to the cytosolic face of the outer mitochondrial membrane.
Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency.
Impact
GeneRIF
Verstreken et al., Leuven, Belgium. In Science, 2012
study identified UBIAD1/Heix as a modifier of pink1
Regulation of mitochondrial permeability transition pore by PINK1.
GeneRIF
Shen et al., Boston, United States. In Mol Neurodegener, 2011
Our findings show that loss of PINK1 causes selective increases in mitochondrial permeability transition pore opening and mitochondrial calcium
Expression of Pink1 with α-synuclein in the dopaminergic neurons of Drosophila leads to increases in both lifespan and healthspan.
GeneRIF
Staveley et al., St. John's, Canada. In Genet Mol Res, 2011
Increased expression of alpha-synuclein and Pink1 together have a synergistic effect, allowing for enhanced protection and increased survival of the organism.
share on facebooktweetadd +1mail to friends